![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Bacteria first species observed to use arsenic-laced DNA backbone
Evolutionary geochemist Felisa Wolfe-Simon, the lead author, and her colleagues found a strain of bacterium (GFAJ-1 of the Halomonadaceae family) that can grow in a medium abundant in arsenic and lacking phosphorus. The GFAJ-1 bacterium naturally resides in the arsenic-rich waters (200 uM) of Mono Lake located in California's Eastern Sierra, and it belongs to a family of proteobacteria that is known to accumulate arsenic. It's not remarkable that GFAJ-1 survives in high concentrations of arsenic, but what is startling is that it potentially integrates arsenic into its DNA and proteins.
w00t.
Evolutionary geochemist Felisa Wolfe-Simon, the lead author, and her colleagues found a strain of bacterium (GFAJ-1 of the Halomonadaceae family) that can grow in a medium abundant in arsenic and lacking phosphorus. The GFAJ-1 bacterium naturally resides in the arsenic-rich waters (200 uM) of Mono Lake located in California's Eastern Sierra, and it belongs to a family of proteobacteria that is known to accumulate arsenic. It's not remarkable that GFAJ-1 survives in high concentrations of arsenic, but what is startling is that it potentially integrates arsenic into its DNA and proteins.
w00t.
no subject
Date: 2010-12-03 12:06 am (UTC)